

Welcome to Environ’s documentation!

Environ is a computational library aimed at introducing environment effects to atomistic first-principles
simulations, in particular for applications in surface science and materials design. It is a Quantum-ESPRESSO
module currently compatible with QE-6.3 and up.

Contents:

	Installation instructions
	Preliminary steps

	Pre-compilation

	Environ installation

	User Tutorial
	1. Example: Solvation Energy (SCCS)

	2. Example: Solvation Energy (SSCS)

	3. Example: Isolated Systems

	4. Example: Two-Dimensional Systems

	5. Example: Charge Distributions

	6. Example: Electrolyte Solutions

	Overview

	Continuum

	Interface Models
	Self-Consistent (SCCS)

	Soft-Sphere (SSCS)

	Non-local interfaces

	Interactions
	Dielectric Medium

	Diffuse Layer Models

	Pressure

	Tension

	Environ Input

	QE PW Input File
	Example 1

	Output Files
	Reading and Automation

	FAQ
	Converge Issues

	Harris-Foulkes Estimate

	Environ Total-Energy Sum

Indices and tables

	Index

	Module Index

	Search Page

Installation instructions

The following sections cover downloading, configuring, and installing Quantum-ESPRESSO (QE) and Environ.

	Preliminary steps
	Obtaining source files
	QE

	Environ

	Configuration
	QE

	Environ v2.0 and up

	Pre-compilation

	Environ installation
	Environ v2.0 and up
	Installing

	Uninstalling

	Environ v1.0 up to v2.0
	Installing

	Uninstalling

	Known Issues

Preliminary steps

	Obtaining source files
	QE

	Environ

	Configuration
	QE

	Environ v2.0 and up

Obtaining source files

QE

	clone the repository and checkout qe-6.3 (or later)

git clone https://gitlab.com/QEF/q-e
git checkout qe-6.3

or

	download a qe-6.3 archive (or later) from the QE releases [https://github.com/QEF/q-e/releases] page

	unpack the archive

tar zxvf qe-X.Y.Z.tar.gz

or, if your tar doesn’t recognize the z flag

gunzip -c qe-X.Y.Z.tar.gz | tar xvf -

Environ

	clone the Environ repository into the QE root directory

git clone https://github.com/environ-developers/Environ.git

or

	download an archive from the Environ releases [https://github.com/environ-developers/Environ/releases] page

	unpack the archive inside the QE root directory

tar zxvf qe-X.Y.Z.tar.gz

or, if your tar doesn’t recognize the z flag

gunzip -c qe-X.Y.Z.tar.gz | tar xvf -

Configuration

QE

Quantum-ESPRESSO uses a configure script to detect compilers and libraries necessary for compilation. To configure the environment, run the following command from the QE root directory

./configure

For additional flags for fine-tuning the configuration process, check out the QE docs [https://www.quantum-espresso.org/Doc/user_guide/].

Environ v2.0 and up

The configure script was adopted in the recent Environ v2.0 release. To configure Environ, run the same command from the Environ root directory

./configure

making sure to use the same compiler flags and libraries.

Pre-compilation

Note

Optional for Environ v2.0 and up.

The installation process of Environ v2.0 (or later) will automatically pre-compile QE and will abort if any issues arise. However, if using an older version of Environ, QE pre-compilation is required at this stage. You may do so from the QE root directory with

make <package>

where package is any of the packages supported by Environ: pw, cp, tddfpt, or xspectra.
If issues arise, solutions may be found in the QE docs [https://www.quantum-espresso.org/Doc/user_guide/] or on the QE forum [https://www.quantum-espresso.org/forum].

Note

If QE is manually pre-compiled, Environ v2.0 (or later) re-compilation of QE will proceed quickly.

Environ installation

The process has been modified greatly in the recent v2.0 release, both for installing and uninstalling Environ. Please follow the links matching your working version.

	Environ v2.0 and up
	Installing

	Uninstalling

	Environ v1.0 up to v2.0
	Installing

	Uninstalling

	Known Issues

Environ v2.0 and up

Note

Run the following commands from the Environ root directory.

Installing

	install Environ

make install

	select the QE package you wish to work with

	select the number of cores for parallel compilation (default = 1)

Note

If issues arise, try compiling in serial.

Uninstalling

To uninstall Environ, run

make uninstall

	enter y to proceed

	when prompted for, enter y to uninstall QE (optional)

Environ v1.0 up to v2.0

Note

Run the following commands from the QE root directory.

Installing

	run the script addonpatch.sh with the -patch option

./install/addsonpatch.sh Environ Environ/src Modules -patch

	patch the necessary QE files with

./Environ/patches/environpatch.sh -patch

	update QE dependencies

./install/makedeps.sh

	re-compile the chosen QE package (pw, cp, tddfpt, or xspectra)

make <package>

Uninstalling

	run the QE script addsonpatch.sh with the -revert option

./install/addsonpatch.sh Environ Environ/src Modules -revert

	run the Environ installation script with the -revert option

./Environ/patches/environpatch.sh -revert

	run the QE script to regenerate modules’ dependencies

./install/makedeps.sh

	remove objects, modules, and exectuables

make clean

Known Issues

In Environ v1.0, there is an issue with the installation procedure for codes different from pw.x. The problem seems to depend on the compiler, but it is present in the most common Intel Fortran compiler. The solution for this problem requires some work, which is described here, and will be fixed in future releases.

There is some circular dependencies between Environ modules and PW modules, but since the linkers only look for the dependencies written at the time of the Environ installation, they will not be able to function as intended.

To fix this, one can edit the Makefile manually, to add these PW dependencies, so that instead of:

PWOBJS = some-path/PW/src/libpw.a
QEMODS = some-path/Modules/libquemod.a some-more-libraries.a

we have:

PWOBJS = some-path/PW/src/libpw.a
QEMODS = some-path/Modules/libquemod.a some-more-libraries.a some-path/PW/src/libpw.a

This may be necessary for the following files:

PHonon/FD/Makefile
PHonon/Gamma/Makefile
PHonon/PH/Makefile
PWCOND/src/Makefile
TDDFPT/src/Makefile
XSpectra/src/Makefile
GWW/bse/Makefile
GWW/head/Makefile
GWW/pw4gww/Makefile

There is an exception, for the CPV Makefile, instead of this:

QEMODS=../../Modules/libqemod.a

do this:

QEMODS=../../Modules/libqemod.a libcp.a

User Tutorial

This user tutorial will run through the examples that exist in the Environ module. These examples are set up
to run via executing bash scripts. The context for these tests are given in the appropriate README file.
The bash scripts contain explanations behind settings. A more verbose explanation, along with a guide
on setting up jobs from scratch can be seen in this tutorial. It is assumed that the reader has some
familiarity of Quantum Espresso and the setup of a pw input file. If this is not the case, one can refer to a
brief overview: QE PW Input File.

	1. Example: Solvation Energy (SCCS)

	2. Example: Solvation Energy (SSCS)

	3. Example: Isolated Systems

	4. Example: Two-Dimensional Systems

	5. Example: Charge Distributions

	6. Example: Electrolyte Solutions

1. Example: Solvation Energy (SCCS)

This first example will demonstrate using the pw.x executable with Environ to calculate the solvation energy
and other related solvation quantities for a water molecule in a water solvent. A more in-depth explanation
of the demonstration can be found in the README. The overall idea is as follows: solvation energy is the
difference in energy between a solute in vacuum and in solvent. By default, the pw.x program calculates
the energy of a system in vacuum. The Environ module allows us to account for additional effects or
correction factors. It also allows us to add some non-vacuum environment, in this case, a water solvent.
Hence by running pw.x twice with different Environ parameters, one can calculate the energy of the system
in vacuum and in water, thus obtaining the solvation energy.

In general, execution of pw.x requires a correctly formatted input file with all the descriptive properties of
the desired system. With the Environ addon, an additional input file is required that contains simulation
parameters for the environment. Unlike the pw input file that can be arbitrarily named and then specified on
execution of the program, the Environ file must be named ‘environ.in’. To enable the environ addon on a pw
calculation, the --environ modifier should be added. Hence the command, ./pw.x --environ < example.in
would
feed in a pw input file named example.in into pw.x and run a serial calculation via whichever FORTRAN compiler
Quantum ESPRESSO has been configured with (as with any program, call pw.x from its actual position, or add
it to the PATH). Since the --environ modifier is added, pw.x now expects
an environ.in file. Failure to do so will result in an error.

The bash script run_example.sh generates all the necessary files described above and executes multiple pw
calculations successively. Due to the constraint of the environ.in name, a change in environment should require
files to be renamed on the fly (something that is taken care of here in the bash script). Alternatively one
can set up multiple runs to execute in separate directories thus avoiding this issue entirely.

The general format of the environ.in file can be seen starting line 154 of the bash script. Alternatively one
can run the bash script and view the generated environ files in the results folder (these have the environ
prefix and the .in suffix). Refer to the input documentation (which can be viewed on the browser from the local
html file, Doc/INPUT_Environ.html) for in-depth information on any of the variables as well as the expected
structure. The general structure splits parameters into a number of keywords, &ENVIRON, &BOUNDARY, and
&ELECTROSTATIC. This file has fortran-like formatting and as such, ‘!’ can prepend comments.

! Some comment
&ENVIRON
 verbose = 0

Environ is designed to be modular and as a result, many of the parameters are interchangeable. Each
parameter belongs to a corresponding keyword and therefore should be placed accordingly. The parameters
used in the program are also helpfully described in the bash file. By default, the verbosity parameter (verbose)
is set to zero, which limits output to the standard pw output location (which is to the terminal, and therefore
is often piped into an output file).

Some helpful environment specific quantities can also be printed out. These
are typically used on the development side for debugging. The option verbose=1 (or any higher integer value)
will output these in a file named environ.debug. The option verbose=2 will additionally output gaussian cube
files that contain the density objects of important quantities. Specifying this option will impact performance
due to the heavy I/O operations, and for the majority of simulations, a verbosity of zero ought to be
sufficient, which is the default.

&ENVIRON
 environ_thr = 1.d-1

The environ threshold specifies when to start environ contributions to the SCF iterative step. The default
value is suitable primarily for small systems. Note that since these input files follow fortran convention,
double precision is notated as above.

&ENVIRON
 environ_type = 'vacuum'

The environ type simplifies the requirement of some of the physical parameters (such as pressure, surface
tension, and static permittivity), which arise depending on the interface model applied. One can manually add
these, but these have been tuned to optimal values, and therefore it is generally preferable to use the preset
values by setting this parameter accordingly (vacuum, water, water-anions, water-cations).

Note

This option is equivalent to

&ENVIRON
 environ_type = 'input'
 env_surface_tension = 0
 env_pressure = 0
 env_static_permittivity = 1

&ELECTROSTATIC
 pbc_correction = 'parabolic'
 pbc_dim = 0

By design, pw assumes a simulation cell with 3D periodicity. This can be overcome by setting a simulation cell
with enough space and enabling the pbc_correction parameter (which in turn requires the env_electrostatic
parameter to be set as true). This correction is an approximation but should be sufficient for most simulation
runs. For more accurate results, one may want to refer to martyna-tuckerman (see Q-E input documentation under
‘assume-isolated’), which does require a larger simulation cell (and therefore more physical memory). For
simulations that require one to retain periodicity in 1 or 2 dimensions (for example, a diffuse-layer
simulation), the pbc_dim parameter can be set appropriately. More details on this quadratic correction method
can be found in the publication 1.

&ELECTROSTATIC
 tol = 1.d-11
 mix = 0.6

The electrostatic calculation has its own accuracy that, for the most part, should be set manually in the input
file (since the value itself is reliant on the solver picked).

On running a pw calculation with Environ while reading the output, a few differences are apparent. Firstly
before the SCF loop, Environ Module will be printed, followed by a brief description of the module, and some of
the settings (as defined in the input file). On each step of the SCF iteration, there are additional energy
corrections printed that are a result of the Environ module (the electrostatic embedding term and the correction
to one-el term). These corrections should be non-zero once the threshold specified in Environ’s input file is
met. Finally one can inspect the computation cost of the environ processes at the end of the file.

&BOUNDARY
/

In this example, the boundary is left empty. By default, Environ will use the SCCS model to define the
interface. This model uses the electrostatic density to define the separation between solute and solvent.

&ELECTROSTATIC
 solver = 'direct'
 auxiliary = 'none'

A number of different solvers can be employed to calculate for electrostatic potential. Typically these default
to sensible values according to the setup, however, one can manually set these along with the auxiliary
parameter (in the event of say, polarization charge).

For small investigations such as this example, where only 3 simulations are run, it is sufficient to process
the result directly from the command line. When scaling up to a higher number of simulations, bash or
python scripting can be exploited to automate the process of calculating the solvation energy. Suppose the
user is in the directory containing the newly created PW output files (in the results folder), the output files
of Quantum ESPRESSO are designed for convenient extraction of commonly used results via grep. Calling
grep ! *.out will return the total energy values. Since this is a PW relax calculation, the energy is
calculated multiple times, while updating the positions of the ions depending on the calculated forces in the
system. One should expect to get a result like:

h2o_vacuum_direct.out:! total energy = -34.26804813 Ry
h2o_vacuum_direct.out:! total energy = -34.26815510 Ry
h2o_vacuum_direct.out:! total energy = -34.26825783 Ry
h2o_vacuum_direct.out:! total energy = -34.26826238 Ry
h2o_water_cg.out:! total energy = -34.28845991 Ry
h2o_water_cg.out:! total energy = -34.28851745 Ry
h2o_water_cg.out:! total energy = -34.28858148 Ry
h2o_water_iterative.out:! total energy = -34.28845478 Ry
h2o_water_iterative.out:! total energy = -34.28851656 Ry
h2o_water_iterative.out:! total energy = -34.28857886 Ry

Note that the values may not match exactly due to the compiler used. It is useful to bear in mind when
analysing energies in Rydberg, differences of E-2 are typical for solvation energies, whereas differences of
less than 3E-3 are less than chemical accuracy. We see that the final energy of the system depends on the
solver used, but the difference is 3E-5, well below chemical accuracy and therefore not of much concern for
regular applications. Hence the solvation energy can be calculated (as the difference between the solvation
and vacuum energies) as -6.374kcal/mol (or 2.03E-2Ry) via the conjugative gradient solver, and -6.373kcal/mol
(or 2.03E-2Ry) via the iterative solver. This compares closely to the experimental solvation energy of
water (-6.3kcal/mol 2).

If the user is just interested in the final energy in a relax calculation, a command like grep Final *.out
will achieve this. This example conveniently automates the calculation of these values via bash (along with
other helpful energy values), and prints them out into results.txt for reference.

	1

	
	Dabo et al., Phys. Rev. B 77, 115139 (2008)

	2

	
	
	Marenich et al., Minnesota Solvation Database - version 2012; University of Minnesota: Minneapolis

2. Example: Solvation Energy (SSCS)

In the previous example, one detail that was not explained was the choice of interface model.
As stated previously, Environ is designed to be as modular as is reasonable, which means the user is able
to define settings that enable different models, solvers, and corrections to different subsystems. Previously
the interface model, that defines the separation of the quantum mechanical system (set in the PW input file),
with the solvent environment, was set to SCCS. The SCCS model sets a smooth boundary according to the electronic
density at any particular point. This function is in fact a piece-wise function that is chosen to be easily
differentiable 1.

An alternative model that Environ has implemented is the soft-sphere (SSCS) model 2. This model sets
a smooth boundary according to the ionic positions. Interlocking spheres are taken around each ion, whose
radii are by default consistent with the UFF force fields 3 (note that in the paper, there is an exception
for nitrogen, which is based off Bondi’s radius for nitrogen 4, an option which is not a default in Environ)
in a nature similar to PCM, only these are smooth functions (spherical error functions).

This example repeats the previous setup, instead with a soft-spheres implementation. Since this is a boundary
parameter, one can see on execution of the bash script that the environ input files here differ, now possessing
parameters related to the &BOUNDARY keyword.

 &BOUNDARY
 solvent_mode='ionic'

Simply by setting the solvent_mode parameter one can switch from SCCS to soft-sphere model, environ_type presets
can take care of the required (tuned) parameters associated with the model. Note that the solver (and auxiliary)
parameters are not required for the SSCS.

Calculating the solvation energy is exactly the same procedure as before, and results in a value of
-5.786kcal/mol, within chemical accuracy of the experimental results, as seen in the first example.

	1

	
	Andreussi, I. Dabo, N. Marzari, J. Chem. Phys. 136, 064102 (2012)

	2

	
	Fisicaro et al., J. Chem. Comput. 2017, 13, 8, 3829-3845

	3

	
	
	Rappe et al., J. Am. Chem. Soc. (1992), 114 (25) 114 10024-35

	4

	
	Bondi, J. Phys. Chem. (1964), 68 (3) 68 441-51

3. Example: Isolated Systems

This example shows how to use pw.x to simulate isolated charge systems in vacuum or immersed in a continuum
dielectric constant. Note that this can be thought of as an alternative to Environ’s own periodic correction
as seen in Example 1. Since this setting resides in the pw input file, both input files should be checked for
consistence. In the first example we removed all periodicity from the system with a correction that results
in a fairly good approximation.

&ELECTROSTATIC
 pbc_correction = 'parabolic'
 pbc_dim = 0

In this example, we demonstrate a system without periodicity, thus removing the parameters stated before and
keeping to the defaults. We also demonstrate an alternative to the pbc correction, which is the
martyna-tuckerman 1 correction. This correction is seen as a more accurate method, at the cost of a larger
required cellsize. For reliable results, a cell length of twice the molecule length is recommended, in any
direction. This can be added into the pw input file, under the SYSTEM keyword.

&SYSTEM
 assume_isolated = 'martyna-tuckerman'

The tolerance is different from previous examples. This value is chosen to facilitate the self-consistent
process and will directly affect the speed and accuracy of the convergence. One should set this according to
the type of simulation being run, these values in the examples serving as guidelines for that decision.

Clearly for larger systems, the parabolic correction is a more feasible choice for imposing isolation.
This is a real-space quadratic correction of the electrostatic potential 2, which has been shown to
provide energy accuracy improvements of almost 1 order of magnitude in comparison with the alternative PCC
and GCC schemes for large cell sizes. This correction scheme implemented in Environ is limited to 0D and 2D
systems (which account for the majority of systems that Environ typically works with).

	1

	
	
	Martyna and M. E. Tuckerman, J. Chem. Phys. 110, 2810 (1999)

	2

	I. Dabo et al. Phys. Rev. B 77, 115139 (2008)

4. Example: Two-Dimensional Systems

This example shows how to use pw.x to model two-dimensional periodic systems in contact with a continuum solvent.
This is particurly useful for diffuse layer systems and other surface investigations. For this calculation, a
Pt (111) slab is chosen with a CO molecule adsorbed on the surface.
By running the bash file and inspecting the environ input files, one will notice that
most of the input remains unchanged. The SCCS (self-consistent charge solvation) model is chosen for the solvent
by default and the solvent type is set manually, for example for vacuum,

&ENVIRON
 environ_type = 'input'
 env_static_permittivity = 1
 env_surface_tension = 0.D0
 env_pressure = 0.D0

The change is in the pbc_dim parameter. This needs to be set accordingly and the axis should be subsequently
chosen. This axis parameter determines the direction of the periodicity (that is the plane normal to the axis
will be parallel to the surface or slab). This parameter expects an integer value, 1 for x, 2 for y, and 3 for
z.

&ELECTROSTATIC
 pbc_dim = 2
 pbc_axis = 3

The tolerance is also different from previous examples. This parameter is typically set in order to optimize
the ability for the self-consistent process to converge, and should be picked appropriately depending on the
system. These examples serve as good guidelines for each type of simulation.

Along with the electrostatic solvation energy, which calculated similarly to Example 1, where one takes the
difference between the total energy in vacuum with total energy in electrolyte solvent, this example
calculates the Fermi energy both in vacuum and in solution. Unlike other energy terms, the printed total
Fermi energy is decomposed into terms, one from QE and a correction (delta energy) from Environ. Hence, the
user should sum these terms during post-processing in order to get the Fermi energy of the system (this
is done for the user in this example by the bash script).

5. Example: Charge Distributions

This example follows the previous, now adding a fixed, planar and smooth distribution of charge (specifically a
helmholtz plane). The environ input file for this kind of system is a little more complicated.

First is the use of the keyword solvent_mode = ‘full’. For this calculation, this choice is mandatory due to
the Pt valence density, which results in a hole close to the ionic position, due to the missing core electrons.
This option adds an additional charge density (gaussians) at the location of the ions, that represent the core
electrons and the nuclei. This results in a better description of the interface between vacuum and solvent.
This choice is useful for particular types of atoms where this effect can occur, for example halogens and
transition metals.

&BOUNDARY
 solvent_mode = 'full'

To represent the helmholtz plane, it is necessary to specify the number of external charges in the ENVIRON
keyword and then specify the the charges themselves in a block labelled EXTERNAL_CHARGES (at the end of the
input file). Notice how this structure is similar to how the pw input files handle atomic positions.

EXTERNAL_CHARGES (bohr)
-0.5 0. 0. 25.697 1.0 2 3
-0.5 0. 0. -10.303 1.0 2 3

Each line specifies a charge, and possesses 7 values separated by spaces. In order these describe the charge
(in units of electron charge), x position, y position, z position, spread, dimensionality, and axis. In this
example we wish to define charge planes parallel to the Pt slab. Since we are defining two-dimensional objects
that lie perpendicular to the z-axis, the x and y positions are irrelevent and are thus set to 0.0. The charge
functions are represented by gaussians, and thus the parameters are simply position and spread. Finally the
charges can represent basic shapes depending on the dimensionality defined. For a slab, we specify a
dimensionality of 2. For the direction of the slab, we specify 3, which represents the z-axis. This convention
is consistent with the boundary correction options (explained in the previous example) that define the system
to be periodic in two-dimensions as opposed to the three by default.

We set this system up so that there exists two countercharge planes on either side of the Pt slab. Since the
system is periodic, imposing symmetry in this manner allows the simulation to perform better and is generally
advised. Since there are now two planes of half charge, the resultant electric field is half what it would have
otherwise been. For detailed information on these planar charge setups, see 1, 2, or Explicit Charge.

	1

	
	
	Fu and K. M. Ho, Phys. Rev. Lett. 63, 1617 (1989)

	2

	
	Nattino et al., J. Chem. Phys. 041722 (2019)

6. Example: Electrolyte Solutions

This example, like the previous two, models a 2-D metallic structure, this time, an Ag (100) slab, in
water solution. The
slab is charged and an electrolyte solution is added. This solution can be thought of as a solvent (whose
characteristics we have now implemented a number of times), and electrolyte ions, that are defined based off
a set of parameters. The parameters describing the ions are placed in the ENVIRON keyword

&ENVIRON
 env_electrolyte_ntyp = 2
 zion(1) = 1
 zion(2) = -1
 cion(1) = 1.0
 cion(2) = 1.0
 cionmax = 10.0

The env_electrolyte_ntyp parameter sets the number of ionic species that are to be defined, and for each species
the charge (zion) and the concentration (cion) are to be specified. Finally the maximum concentration can be
set (respresenting the maximum concentration of ions at any point).

A number of electrolyte models can be implemented in Environ. This example iterates through the models based
the numerical method, which utilizes the Poisson-Boltzmann equation or some variant. It also includes some
analytical analogues that, rather than solve the Poisson-Boltzmann equation, add a correction to the potential.
By default, the Poisson-Boltzmann model is set. By specifying the parameter

&ENVIRON
 electrolyte_linearized = .true.

the model is changed to the linear equivalent. Refer to the publications 1, 2 for more details on these
models. Some pbc correction (as explained in example 1) is necessary here, since calculations involving the
electrolyte require open boundary conditions. In the example, this is set to
parabolic, referring to the numerical approach, whereas a change to the gcs correction,

&ELECTROSTATIC
 pbc_correction = 'gcs'

will switch to the analytic approach to solving the relevant Poisson-Boltzmann equation.
Note that this does not include the size-modified equation. The page on diffuse-layer models will describe
each of the models and how they differ in more detail. In particular, the required parameters for each models
do vary slightly. For the linearized Poisson-Boltzmann model and the Poisson-Boltzmann model, the charge
and concentrations need to be specified. The additional max concentration (cionmax) parameter should be
included when choosing the modified Poisson-Boltzmann model. Notice that the model need not be specified
explicitly and is instead inferred by the parameters supplied to the input. The physical models all require
at least the concentrations and the charges of the ions. By setting the maximum concentration to be non-zero,
Environ will assume the user wishes to use the modified Poisson-Boltzmann model.

Note

The gcs correction (Gouy-Chapman Stern) is a 1-D analytical solution to the Poisson-Boltzmann equation
and thus is only valid for 2 dimensional systems. The correction has been shown to produce close results
to the numerical equivalents and should therefore be considered if the user is looking to save computational
time. The parabolic correction (as seen in previous examples) is a general correction that works in any
number of dimensions, however in order for the gcs correction to be valid, there should be no parabolic
correction.

As in previous examples, the
solvent_mode parameter is set to ‘full’, due to a hole close to the Ag ions. A solvent-accessible but ion-free
region in the proximity of the surface (Stern layer) is modeled by introducing an ion-exclusion function as
described here 3.

The interface function respresenting the boundary between the quantum mechanical region and the electrolyte
embedding environment is set in the BOUNDARY keyword

&BOUNDARY
 electrolyte_mode = 'system'
 electrolyte_distance = 10.0
 electrolyte_spread = 0.5

Here, the electrolyte_mode parameter is set to system, corresponding to a simple analytical function.

	1

	
	Nattino et al., J. Chem. Phys. 150, 041722 (2019)

	2

	
	Fisicaro et al., J. Chem. Phys. 144, 014103 (2016)

	3

	I. Dabo et al., arXiv 0901.0096 (2008)

Overview

As opposed to the more commonly used atomistic description of solvents in chemistry simulations, Environ
implements a set of continuum models, with the goal of providing a method of describing systems in
environments with the primary goal of maximizing the focus on the quantum mechanical system. The result is
a relatively succinct description of the environment unsuitable for capturing certain effects within this
regime, yet the advantages of reduced computational cost make this approach invaluable for many applications.

These models belong to a family of hierarchical approaches that separate the treatment of the quantum
mechanical system from the environment. Varying choices for representing this environment result in varying
groups of methods, each with their own ideal applications. For example Quantum Mechanics has been coupled
with Molecular Mechanics (QM/MM) thus retaining atomistic details of the embedding system while still
treating it with a less computationally intensive scheme. The drawback of such an approach is perhaps not
going far enough in terms of cost reduction, since a statistical sampling is still required for the
environment configurations. Additionally the accuracy of such an approach is strictly dependent on the quality
of the classical parameterization used to describe the components within the environment.

Continuum models go one step further, now removing atomistic details in the environment under the assumption
that a statistical average of the environment results in a homogenous continuum. This can be justified for
many solvent systems (with the exception of perhaps solvent atoms close to the QM system, in certain scenarios).
One popular continuum model within the chemistry community is the Polarizable Continuum Model (PCM), which
has been progressively extended and optimized for simulation stability and speed over the years. The
breakthrough in the field of condensed matter was the Fattebert and Gygi (FG) model, which kickstarted
substantial interest and many publications in the following years. The continuum models implemented in Environ
are in some ways derived from the ideas presented in the PCM and the FG model. These have been successfully
applied to neutral liquids and electrolyte solutions, with periodic crystal structures and small isolated
molecules.

More recent developments have been made to improve these methods, especially towards better transferability,
and there has been work in proposed multi-scale approaches that combine multiple different embedding schemes,
with the same goals of effectively distributing computational time towards more important areas.

Continuum

Continuum models were originally designed to handle liquid solution environments where the statistical
averaging assumption in the relevant regions was viable. Typically these environments would have neutral
net charge and a temperature where specific interactions like hydrogen bonding did not compromise the
homogeneity of the system. These models have evolved to handle a wider variety of systems, such as ionic
liquids and complex multiscale dielectric environments, such as metal nanoparticles and plasmonic devices on
nearby QM systems.

Interface Models

This page presents a more in-depth description of the interface models implemented in Environ, along
with all revelant input parameters. Much of this text is structured to mirror a tutorial review on
Continuum Embeddings, 1.

In general the interface is a 3D continuous, differentiable scalar field with a range from 0 to 1.
A value of 1 (or within some tolerance) refers to the system, and a value of 0 (or within some tolerance)
refers to the environment. The boundary is a function of the ensemble of the positions of the environment
molecule. The strategy taken by continuum embedding models is to define this boundary from the system
information only. This avoids the need for statistical sampling and/or other computationally expensive
approaches.

The tutorial review summarizes the reasons for choosing a smooth boundary over a sharp one. Environ
implements smooth boundaries since the QM simulation of the embedded system works in 3D (and reciprocal)
space. The choice to retain 3D when working with the interface bypasses the possible issues encountered
in discretization, where singularities and discontinuities are possible. We argue that from a computational
standpoint, it is more reasonable to work with a set of vector and scalar fields that share the same
numerical domain.

Self-Consistent (SCCS)

The SCCS model is described comprehensively in the 2012 publication 2, we present here a summary of the
theory and methodology behind the model.

This model chooses to base the definition of the interface on the electronic density, which is a scalar
field that varies from a higher magnitude close to the ions, to a lower magnitude as we move into the
environment. This approach is based on the original model proposed by Fattebert and Gygi 3.

\[s(\mathbf{r}) = \frac{1}{2}\left(1 - \frac{1 - (\rho^{\text{el}}(\mathbf{r})/\rho_0)^{2\beta}}{1 + (\rho^{\text{el}}(\mathbf{r})/\rho_0)^{2\beta}}\right)\]

which has two parameters, \(\rho_0\) and \(\beta\). Instead it uses a piece-wise definition,

\[s(\mathbf{r}) = t(\ln(\rho^{\text{el}}(\mathbf{r})))\]

where \(t(x)\) is a smooth function, and the two parameters are \(\rho_{\text{min}}\) and
\(\rho_{\text{max}}\) that bound the above function, the function returns 1 with an input above
the max density bound and 0 with an input below the min density bound.

Soft-Sphere (SSCS)

The SSCS model is described comprehensively in the 2017 publication 4, again, we present here a
summary of the theory and methodology behind the model.

This model choose to base the definition of the interface on the ionic positions, and takes a similar
approach to the PCM model 5. In the same vein as the SCCS model, rather than sticking with a 2D
definition of the boundary, the model defines its smooth 3D interface function on interlocking smooth
spheres centered on the ionic positions, and scaled depending on the atom, with an additional global
scaling for parameterization.

Non-local interfaces

The SCCS model can be thought of as a local interface, the value of the interface function is solely
dependent on the electronic density at that position. Likewise, the interface function of the soft-sphere
is agnostic of the ‘bigger picture’. There are a number of limitations of this assumption. Firstly,
it is easy to imagine that more complex system with artifacts such as cavities devoid of molecule
where a solvent should
not access, will be misrepresented by a local model, which will by design fill any cavities without
regard for the physical implications. Secondly, in the SCCS, the net system charge will influence the size
of the QM cavity. Physically this is desirable since for charged systems, a solvent such as water would
interact more closely with the system, but only for positive charges, where the SCCS will shrink
the QM cavity. For negative charges, the model scales the system in the wrong direction and therefore
produces poor results without a reparameterization.

There have been a number of recent techniques proposed in the literature that have been implemented
(or still under development) in Environ. First is the solvent-aware model, which can be toggled in
conjunction with either implemented interface model.

	1

	
	Andreussi and G. Fisicaro, Wiley DOI: 10.1002/qua.25725 (2018)

	2

	
	Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136, 064102 (2012)

	3

	
	
	Fattebert, F. Gygi, J. Comput. Chem., 2002, 23(6), 662

	4

	
	Fisicaro et al., J. Comput. Chem., 2017 13(8), 3829

	5

	
	Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 1981 2;55(1):117-129

Interactions

The following pages cover the interactions between the embedded system and the environment.

	Dielectric Medium

	Diffuse Layer Models
	Explicit Charge

	Poisson-Boltzmann model

	Modified Poisson-Boltzmann model

	Additional Interactions

	Environ

	Pressure

	Tension

Dielectric Medium

Electrostatic solvation effects can be described in terms of a reaction field, which provides a stabilization
effect to the system. In classical electrostatics, this effect is represented in terms of a dielectric medium
with some boundary and a dielectric permittivity, which has different representations depending on the
application. Here we consider the permittivity as a function in space, thus making the definition of a
sharp boundary surface redundant, which itself is consistent with our definition of the interface function.

Fattebert and Gygi presented an electrostatic picture in terms of 3D fields, with the total electrostatic
free energy of the embedded system as

\[F[\rho^{\text{el}}, \{\mathbf{R}_i\}] = \int\rho^{\text{sys}}(\mathbf{r})\phi(\mathbf{r})d^3\mathbf{r}-\int\frac{1}{8\pi}\epsilon(\mathbf{r})\lvert\nabla\phi(\mathbf{r})\rvert^2d^3\mathbf{r}\]

where the electrostatic density term can be decomposed into electronic and ionic terms,

\[\rho^{\text{sys}}(\mathbf{r}) = \left(\rho^{\text{el}}(\mathbf{r}) + \sum_i z_i\delta(\lvert\mathbf{r}-\mathbf{R}_i\rvert)\right),\]

\(z_i\) are the ionic charges, \(\phi(\mathbf{r})\) is the electrostatic potential, and
\(\epsilon(\mathbf{r})\) is the dielectric permittivity, which reflects the system/continuum separation
and is thus a function of the continuum interface, for example,

\[\epsilon(\mathbf{r}) \equiv \epsilon(s(\mathbf{r})) = 1 + (\epsilon_0 - 1)(1 - s(\mathbf{r})),\]

where \(\epsilon_0\) is the bulk dielectric permittivity of the environment.

Note

This dielectric permittivity is the constant set in the Environ input file. Hence Environ takes this
value, and calculates an interface function that scales from 0 (environment) to 1 (system). As one can
see from the equation, the result is a smoothly scaling dielectric permittivity function that transitions
at the computed interface, from 1 (system) representing vacuum, to the permittivity specified by the
environment, say 80 for water.

The functional derivative of the total electrostatic free energy functional defined above with respect to the
electrostatic potential is simply the generalized Poisson equation (GPE),

\[\nabla\cdot\epsilon(\mathbf{r})\nabla\phi(\mathbf{r}) = -4\pi\rho^{\text{sys}}(\mathbf{r}),\]

which is similar to the more popularly known Poisson equation in vacuum,

\[\nabla^2\phi^0(\mathbf{r}) = -4\pi\rho^{\text{sys}}(\mathbf{r}),\]

following the convention that the dielectric permittivity of vacuum is simply 1. The polarization potential
is simply the difference between the vacuum potential and the generalized potential. The generalized Poisson
equation is non-trivial to solve, and an alternative apporach is to define an auxiliary polarization density,
spread at the continuum interface, and expressed as

\[\rho^{\text{pol}}(\mathbf{r}) = \frac{1}{4\pi}\nabla\ln\epsilon(\mathbf{r})\cdot\nabla\phi(\mathbf{r}) - \frac{\epsilon(\mathbf{r}) - 1}{\epsilon(\mathbf{r})}\rho^{\text{sys}}(\mathbf{r}).\]

This depends on the gradient of the logarithm of the dielectric function, and thus Andreussi et al. proposed
an alternative formulation of the dielectric in terms of the continuum interface,

\[\epsilon(\mathbf{r}) = \exp(\log(\epsilon_0[1 - s(\mathbf{r}))).\]

When optimizing the embedded system degrees of freedom, the functional derivatives of the energy with
respect to the electronic density or atomic positions need to be computed. It is possible to break down these
derivatives into more transferable forms,

\[V^{\text{interface}}_{\text{KS}}(\mathbf{r}) = \int\frac{\delta s(\mathbf{r}^{\prime})}{\delta\rho^{\text{el}}(\mathbf{r})}\frac{\delta F[s]}{\delta s(\mathbf{r}^{\prime})}d^3(\mathbf{r})^{\prime},\]

and

\[f^{\text{interface}}_i = -\int\frac{\delta s(\mathbf{r})}{\delta\mathbf{R}_a}\frac{\delta F[s]}{\delta s(\mathbf{r})}d^3(\mathbf{r}).\]

Diffuse Layer Models

This page presents a more in-depth description of the diffuse layer models implemented in Environ, along with
all revelant input parameters.

Explicit Charge

Environ has the ability to represent external charges of various types. As with most of the examples on this
page, we will assume a setup consisting of some noble metal slab (i.e. a two-dimensional system) that can
possess some surface charge. To compensate we then consider the addition of countercharge, either explicitly or
via an electrolyte solution. Explicit charges come in a variety of implemented forms depending on the specified
dimensionality. Suppose we want a point charge electron at some arbitrary position. One could enter the
following into the Environ input file,

EXTERNAL_CHARGES (bohr)
-1 0. 0. 0. 1.0 0 0

Remember to update the env_external_charges parameter appropriately (here we could have something like

&ENVIRON
 env_external_charges = 1

This places a point-charge (since the dimensionality is set to 0), at the origin. The charge is given a negative
value whose magnitude equals that of an electron. The spread is set to 1.0. The dimensionality is given as 0,
and the axis setting is irrelevent but set to 0 anyway. The definition of the spread is
based off the following 1D definition for the gaussian,

\[ae^{\frac{(x-b)^2}{c^2}}\]

Note the lack of the factor of two that some definitions use. In three dimensions, the equation is effectively
the same, only radial around the 3-dimensional point specified in the input. The gaussian is normalized to the
specified charge. This convention has a lot of transferability, and by simply changing the dimensionality of the
input, can be extended to line charges, and planar charges. For these objects, the axis is relevant. For a line
charge, the chosen axis corresponds to a the axis parallel to the line charge, and for a plane, it corresponds
to the axis normal to the plane. Note that this definition clearly does not account for all possible definitions
of line and plane charge distributions, but this can be achieved instead by changing the atomic positions of
the slab.

For an example of plane countercharges, see Example: Charge Distributions.

For models with charge distribution, the free energy functional can be written as

\[F^{\text{PC}}[\rho(\mathbf{r}), \phi(\mathbf{r}] = \int\left[-\frac{\epsilon(\mathbf{r})}{8\pi}\lvert\nabla\phi(\mathbf{r})\rvert^2 + \rho(\mathbf{r})\phi(\mathbf{r}) + \rho^{\text{ions}}(\mathbf{r})\phi(\mathbf{r})\right]d\mathbf{r}\]

where \(\rho(\mathbf{r})\) is the total charge density of the solute, \(\phi(\mathbf{r})\) is the
electrostatic potential, and \(\rho^{\text{ions}}(\mathbf{r})\) is the external charge density that
mimics the counterion accumulation.

Poisson-Boltzmann model

The Poisson-Boltzmann model accounts for the chemical potential and the entropy of the ions in solution.
Adding these consequently explicit concentration-dependent terms results in a different free energy functional
than before,

\[\begin{align}\begin{aligned}F^{\text{PC}}[\rho(\mathbf{r}), \phi(\mathbf{r}, \{c_i(\mathbf{r}\}] = \int\left[-\frac{\epsilon(\mathbf{r})}{8\pi}\lvert\nabla\phi(\mathbf{r})\rvert^2 + \rho(\mathbf{r})\phi(\mathbf{r}) + \rho^{\text{ions}}(\mathbf{r})\phi(\mathbf{r})\right.\\\left.-\sum^{\text{p}}_{i=1}\mu_i(c_i(\mathbf{r})-c_i^0)-T(s[\{c_i(\mathbf{r})\}]-s[\{c_i^0\}])\right]d\mathbf{r}.\end{aligned}\end{align} \]

Here, \(\mu_i\) is the chemical potential of the ith electrolyte species and T is the temperature, that
is included as part of the entropy term.

We assume that these electrolytes have point-charge, and there is ideal mixing, leading us to the following
entropy expression,

\[s[\{c_i\}] = -k_B\sum^{\text{p}}_{i=1}c_i(\mathbf{r})\ln\frac{c_i(\mathbf{r})}{\gamma(\mathbf{r})}\]

where \(\gamma(\mathbf{r})\) is the exclusion function and sets the boundary between the electrolyte
and solute regions.

The functional above is
minimized with respect to the concentrations in order to find the equilibrium for electrolyte concentrations.
This leads to the well-known Poisson-Boltzmann equation, which can be numerically solved using Newton’s
iterative algorithm and a preconditioned conjugate gradient algorithm, which works with linear equations.

There are times when it is beneficial to approximate the Poisson-Boltzmann equation, which is non-linear and
thus non-trivial to solve. For \(z_i\phi(\mathbf{r}) \ll k_BT\), that is, when the electrostatic potential
is low, or in the high-temperature limit, one can approximate the Poisson-Boltzmann by its linear form, which
is derived by Taylor expanding the appropriate terms in the full Poisson-Boltzmann equation. The result is
a less computationally expensive approach to representing the electrolyte, while still maintaining the same
parameter set.

In the case where we deal with linear slabs with two-dimensional periodicity, a different approximation can
be used. The idea here is that the one-dimensional Poisson-Boltzmann equation can be analytically solved and
thus this result can be applied as a PBC (periodic boundary condition) correction. This approach is also
known as the Gouy-Chapman Stern model for an electrolyte, and compares well to the numerical approach for
our examples.

Modified Poisson-Boltzmann model

The Poisson-Boltzmann can be improved by dropping the assumpion of point-like ions. This assumption leads to
an overestimate of the electrolyte countercharge accumulation at electrode surfaces, and thus, by accounting
for the steric repulsion between ions, which opposes the electrostatic attraction between the counterions and
the electrode surface, one can improve on the full Poisson-Boltzmann model. The size-modified
Poisson-Boltzmann (MPB) can be derived from the same free energy functional as before, only with a modified
entropy expression

\[\begin{align}\begin{aligned}s[\{c_i\}] = -k_B\sum^{\text{p}}_{i=1}c_i(\mathbf{r})\ln\frac{c_i(\mathbf{r})}{c_{\text{max}}\gamma(\mathbf{r})}\\-k_B\left(c_{\text{max}}\gamma(\mathbf{r} - \sum^{\text{p}}_{i=1}c_i(\mathbf{r})\right)\ln\left(1 - \sum^{\text{p}}_{i=1}\frac{c_i(\mathbf{r})}{c_{\text{max}}\gamma(\mathbf{r})}\right).\end{aligned}\end{align} \]

The idea is to essentially impose a space dependent maximum ionic concentration, and the result is a better
representation of the electrolyte, verified by a comparison to experimental differential capacitance.

Additional Interactions

Environ

Environ has implemented all of the above models in a modular way that allows one to mix and match models and
correction methods where reasonable.

Pressure

There is a pressure field caused by the embedding environment. We represent this pressure field in a continuum
fashion, following the concept of electronic enthalpy introduced by Cococcioni et al 1. The approach exploits
the notion of quantum volume, which can be straightforwardly defined in terms of a continuum interface function
as

\[V \equiv V[s] = \int s(\mathbf{r})d^3\mathbf{r}.\]

The contribution to the enthalpy of the system is expressed as

\[G^{\text{PV}}[s] = P^{\text{ext}}V[s],\]

with \(P^{\text{ext}}\) the external pressure of the environment. This approach is based on an electronic
interface, but equivalent arguments may be adopted for ionic or mixed interfaces. The key ingredient for the
derivation of the enthalpy contribution to the Kohn-Sham potential or the inter-atomic forces is the functional
derivative of the additional energetic term with respect to the interface function, which for the equation
defining the continuum interface function above, is simply

\[\frac{\delta F^{\text{PV}}[s]}{\delta s}(\mathbf{r}) = 1.\]

	1

	Cococcioni M, Mauri F, Ceder G, Marzari N, Phys. Rev. Lett. 2005 4;94(14):145501

Tension

Cococcioni et al. 1 proposed an environment effect related to the quantum surface of the embedded system. The
macroscopic physical picture is the one of surface tension, which controls the size of the boundary between the
system and environment. An embedding interaction based on the quantum surface was proposed by Scherlis et al. 2
to estimate the free energy penalty of creating a void into the continuum liquid solution, that is, the
cavitation free energy,

\[F^{\text{cav}}[s] = \gamma S[s],\]

where the surface is defined in terms of the interface function,

\[S[s] = \int\lvert\nabla s(\mathbf{r})\rvert d^3\mathbf{r}.\]

Various publications have generalized and revised this cavitation free energy function 3, 4, the
implementation of the surface tension being a result of this work. The functional derivative of the energy
contribution with respect to the interface function is

\[\frac{\delta F^{\text{cav}}[s]}{\delta s}(\mathbf{r}) = -\nabla\cdot\left(\frac{\nabla s(\mathbf{r})}{\lvert\nabla s(\mathbf{r}\rvert}\right),\]

which is used in the calculation of the contribution to the Kohn-Sham potential or the interatomic forces.

	1

	Cococcioni M, Mauri F, Ceder G, Marzari N, Phys. Rev. Lett. 2005 4;94(14):145501

	2

	
	
	Scherlis, J. L. Fattebert, F. Gygi, M. Cococcioni, N. Marzari, J. Chem. Phys. 2006, 124(7), 74103

	3

	Andreussi O, Dabo I, Marzari N, J. Chem. Phys. 2012 2;136(6):064102

	4

	
	Fisicaro, L. Genovese, O. Andreussi, S. Mandal, N. N. Nair, N. Marzari, et al., J. Chem. Theory Comput. 2017, 13(8), 3829

Environ Input

pw.x: input description

 QE PW Input File

QE PW Input File

This page explains the PW input files in more detail. It refers to each of the examples and the input files
auto-generated by each of the scripts.

A standard PW file contains options for the locations of associated files, and any output files, as well
any information about the system, including the atoms and their positions, and the dimensions of the cell.
For users new to Quantum Espresso, it is often easier to copy working PW files and editing individual parameters
rather than building these from scratch. For those that are interested, there are also tools that generate
PW input files, such as ASE 1. Alternatively a number of users have written their own helper scripts to
expedite the tedious procedure of creating large batches of input files for larger investigations.

An essential reference page is the PW input file description page 2, which contains a brief explanation
of every possible choice of parameter and their options.

Example 1

The input file generated for the first example is for an isolated water molecule chosen to be the system.
Isolation is imposed by Environ, so although there are options on the Quantum-Espresso side (see Example 3),
these are not necessary here. We start at the bottom of the file with the definition of the water molecule.
Quantum Espresso expects the initial positions of the water in some consistent reasonable choice of units.

ATOMIC_SPECIES
 H 1 H.pbe-rrkjus.UPF
 O 16 O.pbe-rrkjus.UPF
ATOMIC_POSITIONS (bohr)
O 11.79 12.05 11.50
H 13.45 11.22 11.50
H 10.56 10.66 11.50

The atomic species keyword introduces each individual atom present in the system, along with their atomic
mass and the name of the pseudopotential file they should refer to. Note that Quantum Espresso can have
multiple entries of the same atomic species (which should be labelled differently). The pseudopotential files
should be placed in a folder referenced by the pseudopotential directory choice (whose default can be set
in the environment variables for Quantum Espresso, or manually set as we will show here in the input file).

	1

	https://wiki.fysik.dtu.dk/ase/index.html

	2

	https://www.quantum-espresso.org/Doc/INPUT_PW.html

 Output Files

Output Files

Unlike Quantum-ESPRESSO, which parses the entire output into an XML file, Environ currently relies solely on
the output file and an associated environ-debug file (if the appropriate verbosity is set in the input).
The reason for this is that Environ is currently a plugin and does not overwrite or modify any of the base
Quantum-ESPRESSO files. Hence any additional output is only currently printed out into the terminal (or piped
into an output file), or in environ specific output files. This may be dealt with more elegantly in the future.

Reading and Automation

When using Environ, it is more appropriate to rely on the direct output of the program. One can
feed this into a file and parse that file, typically using grep on certain keywords, or using scripting.
Users have developed post-processing tools for extracting information for personal use. These can be
particularly attractive when running many simulations for a particular investigation and as such, it is likely
that we will release some helpful post-processing tools along with future releases.

 FAQ

FAQ

This section attempts to address Frequently Asked Questions regarding Environ. If your query does not
relate to any of these sections, check out the Q&A section on the website, which has instructions on joining
the mailing group where you can chat with one of the developers.

Converge Issues

There are physical and/or numerical reasons for why a calculation may explode. The latter is easier to solve,
by tuning some of the parameters in the input file. The former is a little more tricky to handle.

Roughly speaking, in a calculation with Environ, one needs to include some extra terms to the Kohn-Sham
potential of the system in vacuum. These terms depend on the electronic density itself, in particular due to
the fact that the interface between the system and the environment is defined in terms of the electronic
density. Moreover, to compute one of these terms (e.g. the electrostatic interaction with the dielectric
continuum), Environ uses an iterative approach, so at every SCF step, there is an additional iterative procedure
performed by Environ, let’s call this the polarization iteration, in contrast to the SCF iteration.

There are two Environ parameters which are crucial to help convergence of the total SCF calculation,
tol, which controls the convergence of the polarization iteration, and environ_thr, which determines
when the polarization iteration starts.

When you decrease tol, the extra term coming from the interaction with the dielectric will be computed more
accurately, but it will require more time to be computed. On the other hand, if the parameter is not set to
be sufficiently accurate, the SCF procedure may not convergence as quickly, thus slowing the simulation down
noticeably. Furthermore, a low convergence speed in the SCF may leads to oscillation around the SCF threshold,
leading to convergence failure. Due to the fact that in general, the polarization iteration is less expensive
than the SCF iteration, it is recommended that the user opts for a decreased tol when encountering these
issues. Hence if in doubt, start with a generic value for the tolerance, be it the default or some value taken
from the examples (depending on what you’re trying to simulate), and decrease if necessary.

The existence of environ_thr allows for better convergence in general, since it is advisable not to add
polarization correction terms in the first few SCF steps, due to the fact the accuracy of these energy terms
will still be poor (although if one is starting from a good set of input parameters, it is probably fine to
enable the polarization correction from the start of the iteration, in which case the
environ_restart = .true. will enable this). On the other hand, waiting too long to
start adding Environ corrections can lead to poor convergence due to the fact that before the polarization
iteration corrections kick in, the system is converging for vacuum, not a solution. Hence one can analyze the
output file and see when the correction terms begin, in order to judge whether environ_thr is good or not.
If the SCF accuracy explodes or converges poorly after the polarization iterations begin, it is recommended
that one increases environ_thr. One rule of thumb to go by would be to make sure that Environ corrections
skip only around 3-5 SCF steps.

A further source of errors may arise due to the use of pseudopotentials for handling core electrons. This
problem is more common in transition metals of halogens, and it comes from the neglect of these core
electrons in the charge density used to build the interface with the environment. In some cases there appears
to be a hole in the charge density on the nuclei, which is then filled with the environment (in fact, a
couple of the examples in the tutorial address this fact and account for it in the input file). The solution
is to use solvent_mode = 'full'. This option adds additional gaussians centered on each atom, effectively
describing the core electrons and thus not allowing the environment to permeate inside the atoms, while
not compromising the definition of the interface.

Another suggestion is to simplify the physics in the problem. In particular, since in most applications the
most important effects of the environment are the electrostatic ones, you may want to switch off all the other
non-electrostatic terms. This is possible by setting environ_type = 'input' and manually setting the
parameters that you want. By only setting env_static_permittivity = 78.3, one only retains the dielectric
continuum in the calculation, since all other contributions are off by default.

When simulating a 2D system, convergence of the polarization potential is made more difficult by the artificial
finite electric field coming from periodic boundary conditions. To avoid this, it would be better to use a PBC
correction, in particular for slabs in Environ, a parabolic correction is implemented, and alternatively, one
can utilize the Quantum ESPRESSO isolated options. See example 3 for a demonstration on isolated systems.
Increasing the cellsize perpendicular to the slab will decrease periodic effects but increase convergence times
due to the larger cell.

One reason of poor convergence is simply a complex shape of the interface. New releases implement models
designed to deal with some of these complex shapes.

Harris-Foulkes Estimate

The Harris-Foulkes estimate does not take into account the extra terms coming from Environ, as it would cost
more than necessary for a quantity that is only used to have an estimate. As a matter of fact, also the SCF
accuracy does not take into full account of the environment, but again it would need a secondary correction
that would cost more than its utility.

Environ Total-Energy Sum

The energy output in an Environ calculation may be confusing in that the total energy is not the sum of the
reported terms and it is not immediately clear what solvation energy means, but before going into the details
of why, one point should be addressed. dGsol, and in particular dGel, are not quantities that you
get from a single calculation in solution, but rather are obtained as the difference in energy from a
calculation fully optimized (nuclei and electrons) in solution minus a calculation fully optimized (nuclei and
electrons) in vacuum. This is explained in Example 1 of the Tutorial. In general, for these values, one needs
two geometry optimization (relax) calculations for these energy values that are typically reported in our
publications. Hence solvation energy requires two calculations.

The different terms do not add to the same energy due to the fact that there is a spurious extra term which is
subtracted from the one-electron contribution, but is not reported in the output. The reason is that total
energy is computed in pw making use of the secular expression (see for example W. E. Pickett, Computer Physics
Reports, 9(3), 115-198, 1989, equations 5.21-5.22 etc.), thus from the sum of occupied states eigenvalues
(so called band structure energy, “eband” in pw.x), in which some contributions are included correctly (the
kinetic and the electron-nuclei interaction), some are double counted (hartree), some need to be removed and
added back with the correct expression (xc term), and some are missing (nuclei-nuclei interaction via ewald sum).
What PW reports in the output as the one-electron contribution is in fact ebands minus the double counted
hartree and minus the wrong xc term (these spurious terms are summed up in pw.x into a term named “deband”).

Similarly, when performing the solvated calculation, there are some terms which are double counted (the
electronic part of the solvation energy), some that are missing (the ionic part of the solvation energy), some
that have the wrong expression (pressure and cavitation) and some that need to be removed (for example a term
coming from the rho-dependence of the dielectric constant). All these spurious terms are collected in a term
named “deenviron”, which has the same meaning as “deband” seen above. To get to the point, what is wrong in the
output is the one-electron contribution, which is reported including the spurious deenviron term. As the Environ
module was designed not to affect the standard printout of QE, this output was not modified, and consequently,
the terms do not sum to the correct total energy. The correction deenviron and deband terms were not reported,
due to their insignifance in anything alone. However, this may well change in future Environ releases.

 Index

Index

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Environ’s documentation!

 		
 Installation instructions

 		
 Preliminary steps

 		
 Obtaining source files

 		
 Configuration

 		
 Pre-compilation

 		
 Environ installation

 		
 Environ v2.0 and up

 		
 Environ v1.0 up to v2.0

 		
 User Tutorial

 		
 Example: Solvation Energy (SCCS)

 		
 Example: Solvation Energy (SSCS)

 		
 Example: Isolated Systems

 		
 Example: Two-Dimensional Systems

 		
 Example: Charge Distributions

 		
 Example: Electrolyte Solutions

 		
 Overview

 		
 Continuum

 		
 Interface Models

 		
 Self-Consistent (SCCS)

 		
 Soft-Sphere (SSCS)

 		
 Non-local interfaces

 		
 Interactions

 		
 Dielectric Medium

 		
 Diffuse Layer Models

 		
 Explicit Charge

 		
 Poisson-Boltzmann model

 		
 Modified Poisson-Boltzmann model

 		
 Additional Interactions

 		
 Environ

 		
 Pressure

 		
 Tension

 		
 Environ Input

 		
 QE PW Input File

 		
 Example 1

 		
 Output Files

 		
 Reading and Automation

 		
 FAQ

 		
 Converge Issues

 		
 Harris-Foulkes Estimate

 		
 Environ Total-Energy Sum

_static/ajax-loader.